
996 volume 31 NumBeR 11 NovemBeR 2013 nature biotechnology

So you want to be a computational
biologist?
Nick Loman & Mick Watson

Two computational biologists give advice when starting out on computational projects.

The term ‘computational biologist’ can
encompass several roles, including data

analyst, data curator, database developer, stat-
istician, mathematical modeler, bioinforma-
tician, software developer, ontologist—and
many more. What’s clear is that computers are
now essential components of modern biologi-
cal research, and scientists are being asked to
adopt new skills in computational biology and
master new terminology (Box 1). Whether
you’re a student, a professor or somewhere in
between, if you increasingly find that compu-
tational analysis is important to your research,
follow the advice below and start along the road
towards becoming a computational biologist!

Understand your goals and choose
appropriate methods
Key to good computational biology is the
selection and use of appropriate software.
Before you can usefully interpret the output of
a piece of software, you must understand what
the software is doing. You wouldn’t go into the

laboratory and perform a polymerase chain
reaction without a basic understanding of the
method. Why would you do the same with a
computational analysis? Understanding the
underlying methods and algorithms gives you
the tools to interpret the results. That doesn’t
mean you need to read through each line of
source code, but you should have a grasp of
the concepts.

Software tools are often implementations of a
particular algorithm that may be well-suited for
particular types of data; for example, in de novo
assembly, an Overlap-Layout-Consensus

assembler is optimized for longer sequence
reads, whereas de Bruijn graphs were designed
with short reads in mind. Choosing software
employing the most appropriate algorithm will
save you a lot of time.

Set traps for your own scripts and other
people’s
How do you know your script, software or pipe-
line is working? Computers will happily output
results for the most bizarre of input data, and
the absence of an error message is not an indica-
tion of success. Create tests, small datasets for

Mick Watson is at The Roslin Institute,
University of Edinburgh, Edinburgh, UK, and is
Head of Bioinformatics at Edinburgh Genomics,
an academic genomics facility developing
bioinformatics training in next-generation
sequence analysis (http://genomics.ed.ac.uk).
Follow him on Twitter, @BioMickWatson, and
on his blog at http://biomickwatson.wordpress.
com/. Nick Loman works as an independent
research fellow in the Institute for Microbiology
and Infection at the University of Birmingham,
Birmingham, UK, sponsored by a Medical
Research Council Special Training Fellowship in
Biomedical Informatics. Follow him on Twitter,
@pathogenomenick, and on his blog at http://
pathogenomics.bham.ac.uk/blog.
e-mail: n.j.loman@bham.ac.uk or
mick.watson@roslin.ed.ac.uk

Box 1 Glossary of useful computing terms

Command line interface. A means of interacting with a computer whereby the user issues
commands in the form of successive lines of text. The term ‘shell’, or ‘UNIX shell’, refers
to a command line interpreter for the UNIX/Linux operating system. Microsoft provides a
command line interface to Windows, but this is not commonly used in bioinformatics.

Compute cluster. A collection of computers that work together, often to run many jobs at
once through a job scheduling and resource management system.

Pipeline. In computer jargon, this is a series of steps, or software tools, run in a specified
order, where the input to one tool may be the output of a previous tool. Can include
automated logical decisions.

Source code (code). Refers to computer instructions written in a particular programming
language.

Software. We don’t really need to define this, do we? For completeness, let’s just say this
is a set of instructions that instructs a computer to carry out certain operations. Can be an
executable file that is ‘compiled’ from source code or a collection of source code that is
interpreted.

Script. Source code written in an interpreted language, often used in bioinformatics to
perform particular tasks, for example, running other software in a specified order, such as
in a pipeline.

Source control and version control. A system by which changes in source code are tracked
and managed, and under which multiple versions of source code can be maintained.

UNIX/Linux. UNIX is a stable, multiuser, multitasking system for servers, desktops and
laptops, with both a graphical and command-line interface. UNIX comes in many different
versions. Linux refers to a number of different UNIX-like operating systems that are
developed under an open-source model.

c o m m e n Ta ry
np

g
©

 2
01

3
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

http://genomics.ed.ac.uk
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://pathogenomics.bham.ac.uk/blog/author/nick/
http://pathogenomics.bham.ac.uk/blog/author/nick/
mailto:n.j.loman@bham.ac.uk
mailto:mick.watson@roslin.ed.ac.uk

nature biotechnology volume 31 NumBeR 11 NovemBeR 2013 997

pipeline? Have you saved time? Is your pipe-
line really of use to others? If those steps are
only ever going to be run by you, then a simple
script will suffice and any attempts at pipelining
will simply waste time. Similarly, if those steps
will only ever be run once, just run them once,
document the fact you did so and move on.

An Obama frame of mind
Yes you can! As a computational biologist, you
will need to be creative, from tweaking exist-
ing methods to developing entirely new ones.
Be adventurous, be prepared to fail, but keep
going. It’s amazing what you can achieve by
using Google, by asking other people in the
field and by teaching yourself how to solve
particular problems.

Attending training courses (Table 2) can
be useful, but these are only really the start of
your learning, not the end. Continue by teach-
ing yourself afterwards.

Be suspicious and trust nobody
The following experiment is often performed
during statistics training. First, a large matrix of
random numbers is created and each column
is designated as ‘case’ or ‘control’. A statistical
test is then applied to each row to test for sig-
nificant differences between the case data and
the control data. You should not be surprised
to learn that hundreds of rows come back with
P values indicating statistical significance.
Biological datasets, such as those generated by
genomics experiments are just like this, large
and full of noise. Your data analysis will pro-
duce both false positives and false negatives;
and there may be systematic bias in the data,
introduced either in the experiment or during
the analysis.

Pipelineitis is a nasty disease
A pipeline is a series of steps, or software tools,
run in sequence according to a predefined
plan. Pipelines are great for running exactly
the same set of steps in a repetitive fashion,
and for sharing protocols with others, but they

force you into a rigid way of thinking and can
decrease creativity.

Warning: don’t pipeline too early. Get a
method working before you turn it into a
pipeline. And even then, does it need to be a

which the answer is known, and check that the
software or pipeline can reproduce that answer.
Try and do that for every ‘type’ of answer you
expect to find. Double-check the results of
everything, to see if those results make sense.
Laboratory scientists wouldn’t dream of run-
ning experiments without the necessary posi-
tive and negative controls, and these tests are
the computational biology equivalent.

You’re a scientist, not a programmer
The perfect is the enemy of the good.
Remember you are a scientist and the qual-
ity of your research is what is important, not
how pretty your source code looks. Perfectly
written, extensively documented, elegant code
that gets the answer wrong is not as useful as a
basic script that gets it right. Having said that,
once you’re sure your core algorithm works,
spend time making it elegant and documenting
how to use it. Use your biological knowledge
as much as possible—that’s what makes you a
computational biologist.

Use version control software
Versioning will help you track changes to your
code, maintain multiple versions and to work
collaboratively with others. Using a standard
tool, such as Git or Subversion, you will also
be able to publish your code easily. Be nice to
your future self. A few well-placed README
files explaining the choices you made and why
you made them will be a boon in months or
years when you return to a project. Document
your code and scripts so that you understand
what they do. When you come to publish your
work, try publishing the scripts and methods
you used to generate your results so that others
can reproduce them. Also consider keeping a
digital laboratory notebook to document your
analyses as you perform them. Repositories,
such as Github, are ideal for this and also help
you maintain copies of the repository to serve
as off-site backups (Table 1).

Table 1 Essential tools for the biological software developer
Task Tools

Collaborative software
development

Share data and code through online collaborative working environments such as
Github, Sourceforge and Bitbucket. Use Google to find tutorials on these systems,
e.g., http://try.github.io/

Build powerful pipe-
lines

There are modern software libraries, such as Ruffus, and more traditional tools,
such as Make, to build pipelines from existing software tools. Your choice will
depend on personal preference and on your favorite programming language.

Make your pipelines
available

You may be comfortable on the command line, but your collaborators may not be.
Therefore you can deliver your pipelines through graphical environments such as
Galaxy (http://www.galaxyproject.org/) or Taverna (http://www.taverna.org.uk/).

Integrated develop-
ment environment
(IDE)

Whether you want to adopt a full IDE, such as Eclipse, or an advanced text editor,
such as Emacs, you will need something to use to develop your code. Again, this
will likely depend on your choice of language and personal preference. However, at
some point, you’ll have to use a command line–based editor, such as vim or nano,
so it’s advisable to learn at least the basics.

Table 2 Useful resources for learning
Type of information Relevant URLs

MOOCs (massive
open online courses)

These are very popular at the moment and offer free training over the internet.
Coursera (https://www.coursera.org/), Udacity (https://www.udacity.com/), edX
(https://www.edx.org/) and the Kahn Academy (https://www.khanacademy.org/) have
a range of courses relevant to bioinformatics, genomics, computing, statistics and
modeling.

Learning to code Codecademy (http://www.codecademy.com/) and Code School (https://www.
codeschool.com/) are not specific to biology but do offer simple ways to learn how
to code. For a more biological perspective, “Python for biologists” (http://
pythonforbiologists.com/) is always popular. For examples of best practices visit
http://software-carpentry.org/.

Bioinformatics
problem solving

Learn bioinformatics through problem solving and pit your wits against others at
http://www.rosalind.info.

Web forums These are essential when you start out—ask questions and receive answers from
experts at http://www.seqanswers.com/ and http://www.biostars.org/.

International
organizations

GOBLET is the global organization for bioinformatics learning education and train-
ing (http://www.mygoblet.org/), and ELIXIR is a European organization set up to
provide an infrastructure, including training, for life sciences information (http://
www.elixir-europe.org/).

Blogs and lists A variety of blogs and lists exist online that detail computational biology courses,
such as http://stephenturner.us/p/edu and http://ged.msu.edu/angus/bioinformatics-
courses.html.

“Laboratory scientists wouldn’t
dream of running experiments
without the necessary positive
and negative controls... tests
are the computational biology
equivalent.”

COMMENTARY
np

g
©

 2
01

3
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

http://try.github.io
http://www.galaxyproject.org/
http://www.taverna.org.uk/
https://www.coursera.org/
https://www.udacity.com/
https://www.edx.org/
https://www.khanacademy.org/
http://www.codecademy.com/
https://www.codeschool.com/
https://www.codeschool.com/
http://pythonforbiologists.com/
http://pythonforbiologists.com/
http://software-carpentry.org/
http://www.rosalind.info
http://www.seqanswers.com/
http://www.biostars.org/
http://www.mygoblet.org/
http://www.elixir-europe.org/
http://www.elixir-europe.org/
http://stephenturner.us/p/edu
http://ged.msu.edu/angus/bioinformatics-courses.html
http://ged.msu.edu/angus/bioinformatics-courses.html

998 volume 31 NumBeR 11 NovemBeR 2013 nature biotechnology

designed to test any hypotheses you gener-
ate. Remember, the real story may not be in
your data at all! If the biological system you’re
interested in hinges on phosphorylation of
a protein, then you probably won’t see this
effect in your RNA-seq data. You are basically
a detective. Work the data. Figure it out.

Someone has already done this. Find them!
No matter how gnarly a problem or how cut-
ting-edge a method, there is a pretty good
chance someone out there has tried to tackle
it already. Two excellent resources for dis-
cussing problems with software are BioStars
(http://www.biostars.org/) and SEQanswers
(http://seqanswers.com/). Twitter is another
place where you will be able to find advice
and links to resources and papers. Hook up
with other computational biologists in your
department or institute. There is likely to
be a local computational biology meeting
or interest group in your area, so find it and
join up; if there isn’t, why not start your own
like Nick did!

In conclusion, there is a huge amount of sup-
port available online and through local user
groups, if you want to practice computational
biology. The most important starting point is
to be brave enough to try and to learn from
these resources. Install Linux on your PC, and
start working through some learning materials
online. You will be astonished what you will be
able to achieve very quickly, and ultimately you
will have a very rewarding experience!

ACKNOWLEDGEMENTS
The authors would like to thank members of the
Twitter community who brought the learning
resources listed in this article to our attention.

Bio* projects from the Open Bioinformatics
Foundation (http://www.open-bio.org/wiki/
Main_Page). Microsoft Excel is a spreadsheet
program, and unless used very carefully, is
not suitable for biological data (http://www.
biomedcentral.com/1471-2105/5/80/). Store
your experimental data, in structured text
files or in an SQL database. Employing basic
database practice, such as normalization (i.e.,
ensuring a single place for each piece of data

associated with your project), means there are
fewer chances to make a mistake later. Make
sure everything is backed up, regularly.

Be a detective
As a computational biologist, a lot of your time
will be spent analyzing and interpreting data.
The data are telling you something. They con-
tain a story and it’s your job to find out what
that story is. Unless you’re very lucky, it prob-
ably won’t be obvious. Finding out will not
be easy. You will have to think about how the
experiment was performed; how the analysis
was performed; and what the results are telling
you. You will need to confidently disregard,
or control for, what you think are errors and
systematic biases in the data.

To do the above you may need to talk to
other scientists involved in the work, or inte-
grate and analyze additional data. You may
need to propose follow-up experiments,

There is a temptation, even among biolo-
gists trained in statistical techniques, to throw
caution to the wind when particular software
or pipelines produce an interesting result.
Instead, treat results with great suspicion, and
carry out further tests to determine whether
the results can be explained by experimental
error or bias. If multiple approaches agree,
then your confidence in those answers
increases. But for many findings, validation
and further work in the laboratory may be
necessary. Knowledge of biology is vital in
the interpretation of computational results.
Setting traps, or tests, as mentioned above,
is only part of this. Those tests are meant
to ensure that your software or pipeline is
working as you expect it to work; it doesn’t
necessarily mean that the answers produced
are correct.

The right tool for the job
Become comfortable working from the
UNIX/Linux command line. The command
line is incredibly powerful, allowing you
greater control over what software is doing
and allowing you to run and control multiple
jobs at once. Most bioinformatics software is
designed to be run from the command line.
Learn about compute clusters and how to run
hundreds of jobs in parallel. You’ll need to
be able to code, but the choice of language
is not as critical as you may be led to believe
by computer scientists. Each language has
strengths and weaknesses, and you may have
to use more than one to get the job done.

Bear in mind that choosing a more popu-
lar language will let you benefit from a larger
library of existing toolsets, for example the

“Knowledge of biology is
vital in the interpretation of
computational results.”

COMMENTARY
np

g
©

 2
01

3
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

http://www.biostars.org/
http://seqanswers.com/
http://www.open-bio.org/wiki/Main_Page
http://www.open-bio.org/wiki/Main_Page
http://www.biomedcentral.com/1471-2105/5/80/comments
http://www.biomedcentral.com/1471-2105/5/80/comments

	So you want to be a computational biologist?
	Understand your goals and choose appropriate methods
	Box 1 Glossary of useful computing terms
	Set traps for your own scripts and other people’s
	Table 1 Essential tools for the biological software developer
	You’re a scientist, not a programmer
	Use version control software
	Pipelineitis is a nasty disease
	An Obama frame of mind
	Be suspicious and trust nobody
	Table 2 Useful resources for learning
	The right tool for the job
	Be a detective
	Someone has already done this. Find them!
	ACKNOWLEDGEMENTS

